IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Safety approach of BORAX Type accidents in French Research Reactors

Y. Chegrani, F. Gupta,S. Pignet, V. Tiberi, L. Heulers

Système de management de la qualité IRSN certifié

Contents of the presentation

Context: Safety of French Research Reactors

- Reactivity Insertion Accidental Transients: Borax
- Analysis of the initiating events: reactivity insertions
- Evaluation of the consequences on the core
- Conclusions and perspectives

Context

Safety of Research Reactors in France

Role of IRSN in nuclear safety

IRSN is the Technical Support Organisation of the French Nuclear Safety Authority.

- At all stages of the facility's life, IRSN verifies that the safety demonstrations are solid, and comply with the safety regulations
 - Recent activities in Research Reactors
 - Preliminary safety review of JHR
 - Decennial safety review of ORPHEE, EOLE and MINERVE
 - Complementary global safety review to include the Fukushima feedback
 - Publication of a Reference document about BORAX in RR Safety

What are the safety requirements ?

Containment of radioactive material

- The fuel must always remain covered in water in any situation, more importantly after a core-damaging accident.
- Practically: The pool walls must be designed to prevent water leakage
 - This requirement must be met with robust defense lines (defense in depth)

BORAX transients are the reference loading to design the containment of research reactors

Beyond Design Basis Accident

What is a Borax accident?

Explosive fast transient observed in research reactors

- Experimentally: BORAX, SPERT-I
- Accidentally: SL-1

Particularities of Research Reactors?

- High reactivity insertion potential (heavy rods)
- Use of aluminum as fuel plate structure material (meat and cladding)

→Low melting point (660°C)

Non destructive tests were also carried out

SPERT-IV

What happens during the accident?

IRSN

Step 1: Initiating events: reactivity insertions

Qualitative and quantitative investigation

Envelope scenario analysis

Various reactivity insertions initiators:

- Rod ejection (JHR)
- Reflector effect (ORPHEE)
- ➔ Conservative scenario

Static neutronic calculations are carried out

- Use of Monte Carlo models to adapt to the large spectrum of designs
- Home-made MC criticality code: MORET5 (several developments in progress)
- Models are always validated against experimental data or other reference codes

Envelope scenario quantification

ORPHEE: flooding / disappearance of structures

Calculated values were underestimated during design phase

Preventive actions are planned

IRSI

Step 2 Analysis of the consequences on the core

Transient calculations

Energy source term for the steam explosion

The pressure load on the containment walls is determined by the energy available at the time of the Fuel/Coolant Interaction

➔ Source term estimation

Lack of knowledge about several physical phenomena
 Large uncertainties on the results

IRSN assessment is based on simple conservative calculations and relevant experimental feedback

Power transient calculation

Simplified calculation tool: 0D modelisation

Point kinetics \rightarrow Mean power evolution

Heat generation in the fuel → Fuel Temperature increase
→ Doppler feedback effect

Clad/Coolant heat exchange → Water density decrease
 → Moderator feedback effect

- Too many unknowns on the transient boiling phenomena
- Available Heat Transfer coefficients are not compatible with JHR conditions
- \rightarrow No heat exchange used: no moderator feedback \rightarrow conservative results

Power transient calculation

Simulation of the JHR scenario

Two ejection speed hypotheses

- Design / Conservative value: 90 ms
- Realistic value: 300 ms

Safety Approach of Borax accidents in RR - November 18, 2011

Power transient calculation

Comparison with relevant experimental feedback

SPERT: instrumented transient runs

- SPERT-I-54 : ultimate destructive test
- SPERT-IV-B16: most violent self limiting transient → no melting

Similarities in core behaviours

Conclusions

- The containment's most challenging accident is analyzed on every level
- If required, IRSN is able to deploy technical studies to support the safety expertise. They offer the opportunity
- ➔ To investigate and comprehend the underlying physical phenomena
- \rightarrow To highlight fragile areas and target the need for R&D
 - Heat exchanges in fast transient

→ To engage in rich technical discussions with the utilities

IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE Safety approach of BORAX Type accidents in French Research Reactors

Faire avancer la sûreté nucléaire

Thank you for your attention!

http://www.irsn.fr/FR/Larecherche/publications-documentation/collection-ouvrages-IRSN/Documents/BORAX_texte_VA_290811.pdf

Système de management de la qualité IRSN certifié